请选择 进入手机版 | 继续访问电脑版

五彩数学

 找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 184|回复: 2

刘徽在数学上的贡献

[复制链接]

34

主题

200

帖子

682

积分

版主

Rank: 7Rank: 7Rank: 7

积分
682
发表于 2016-7-18 19:06:38 | 显示全部楼层 |阅读模式
三国以前,我国数学要籍,首推《九章算术》。刘徽在数学上的贡献,主要在其《九章算术注》一书。《隋书》卷16《律历上》载:“魏陈留王景元四年刘徽注《九章》”。是知《九章算术注》完成于景元四年(263年)。《隋书》卷34《经籍志三》有《九章算术》十卷、《九章重差图》一卷,均注明系刘徽撰。后《九章重差图》失传,唐人将《九章算术注》内有关数学用于测量的《重差》一卷取出,独成一书,因其中第一个问题系测量海岛,故改名为《海岛算经》。刘徽这两个著作是我国数学史上宝贵的文献,即在世界数学史上也有一定的地位。今述其主要贡献如下:
  1.极限观念与割圆术极限意识在春秋战国时已出现,实际加以应用的是刘徽。刘徽已领悟到数列极限的要谛,故能有重要创获。刘徽的杰出贡献首推他在《九章算术注》中创立的割圆术,其所用方法包含初步的极限概念和直线曲线转化的思想。在一千五百年前能运用这种思想,是难能可贵的。
  有了割圆术,也就有了计算圆周率的理论和方法。圆周率是圆周长和直径的比值,简称π值。π值是否正确,直接关系到天文历法、度量衡、水利工程和土木建筑等方面的应用,所以精确计算π值,是数学上的一个重要任务。
  在刘徽以前,已有许多人计算过π值。最早的π值是3,后来又发展到3.1547或√10。但如何求得,从未有人加以科学的阐明。刘徽建立的割圆术,是在圆内接正六边形,然后使边数逐倍增多,他说:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体而无所失矣”。这是因为,圆内接正多边形无限多时,其周长极限即为圆周长,面积即为圆面积。他算到正192边形时,求得圆周率为3.14的近似值。他又用几何方法把它化为。后人即将3.14或叫作“徽率”。刘徽以为还可继续求,唯他不曾再求。以上圆周率是当时世界上的最佳数据。公元前三世纪希腊数学家阿基米得曾提出圆周长于内接圆内多边形而小于圆外切多边形周长,算出了3<π<3的数值。但阿基米得是用的归谬法,他避开了无穷小和极限,而刘徽应用了极限的概念,且只用圆内接正多边形的面积计算,而省去了计算圆外切正多边形的面积,从而收到了事半功倍之效。
  2.关于体积计算的刘徽定理一般地说,柱体或多面体的体积计算较比容易解决,而圆锥、圆台之类的体积就难以求得。刘徽经过苦心思索,终于找到了一条途径,他分别做圆锥的外切正方锥和圆台的外切正方台,结果发现:“求圆亭(圆台)之积,亦犹方幂中求圆幂,圆面积与其外切正方形的面积之比为π∶4,由此他推得:圆台(锥)的体积与其外切正方台(锥)的体积之比,也是π∶4。很显然,如果知道了正方台(锥)的体积,即可求得圆台(锥)的体积。刘徽这个成果,看似简单,实际起着继往开来的重要作用,故有的现代数学家称之为“刘徽定理”。在古代没有微积分的时候,这条定理起着微积分的作用,在现代数学中仍有共价值。刘宋时祖冲之、祖暅父子继承刘徽定理而得出更为进步的祖氏原理。在西方,直到1635年意大利数学家卡瓦列利才有了与祖氏父子类似的思想,比祖氏父子已晚了一千一百多年,比刘徽更迟了一千三百多年。
回复

使用道具 举报

34

主题

200

帖子

682

积分

版主

Rank: 7Rank: 7Rank: 7

积分
682
 楼主| 发表于 2016-7-18 19:10:09 | 显示全部楼层
回复

使用道具 举报

13

主题

225

帖子

671

积分

智慧侠客

Rank: 4

积分
671
发表于 2016-7-21 09:26:28 | 显示全部楼层
原来如此!
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

快速回复 返回顶部 返回列表